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Abstract 

Objectives: To critically appraise experimental ex vivo research that has focussed on 
secondary caries, and to offer possible explanations for the seemingly poor correlation 
to clinical observations. 

Methods: The literature relating to the etiopathogenesis or prevention of secondary 
caries gained from experimental ex vivo research was reviewed, with particular 
emphasis on microleakage and artificial caries-like lesions.    

Results: It is doubtful whether a caries wall lesion can exist independently of an outer 
enamel caries lesion. Microleakage experiments apparently continue to emerge 
regardless of multiple reviews questioning the reliability and validity of the method. 
Several of the approaches used to generate artificial caries-like lesions are very 
aggressive. Remarkably little discussion has evolved about how these aggressive 
approaches create microenvironments that do not occur in reality. Corrosion- and 
biodegradation products may influence the biofilm qualitatively and quantitatively and it 
is difficult to replicate these variables in any ex vivo environment. Clinical data sampling 
method, patient demography as well as study methodology influences the incidence and 
prevalence estimates of secondary caries. Clinical results based on clinical work in 
settings where cost per unit time is of nominal concern do not provide any indications on 
how the restorative material will perform when placed by the average dentists in the 
mouths of their spectrum of patients during a busy workday. 

Recommendations: The term “wall lesion” including its variants is ill defined, has been, 
and is still being used indiscriminately. Stakeholders should avoid using this ambiguous 
label due to its connotation to an entity that does not exist per se. 
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1. Introduction 

Secondary caries is the most commonly reported reason for re-restoration of teeth, 

regardless of restorative material. This conclusion has been consistent in multiple 

narrative and systematic reviews on the clinical performance of dental restorations 

published over the last few decades [1-3].  

For obvious ethical reasons, it is not feasible to conduct clinical trials to monitor the 

progress of initial secondary caries adjacent to restoration margins, with the objective of 

studying etiopathogenesis and/or to identifying potential prognostic factors. Prognostic 

factors are likely associated with the patient, the operator and restorative material, 

including the structure of the tooth-restoration interface following optimal, as well as 

suboptimal handling and placement of the restorative material [2, 3].  

Consequently, stakeholders with a strategy to decrease rates of secondary caries by 

improving restorative materials or material handling procedures are forced to statistically 

correlate as best as possible one, two or combinations of specific properties of existing 

restorative materials or handling procedures with reported rates of secondary caries in 

different clinical studies with various methodological qualities. Such statistics can be 

deceptive, because of a range of likely biases and possible confounding of both the 

independent and dependent variables in the majority of existing clinical studies.  

Planning, conducting and reporting relevant outcomes of clinical comparative trials is 

logistically challenging, costly and potentially unpredictable if the study participant 

attrition is so high that adequate study power cannot be maintained. Moreover, correctly 

handled restorative materials placed under optimal conditions remain intact for an 

extensive time. Manufacturers may question a prioritizing of limited research funds to 

conduct clinical studies to evaluate the degrees of flawlessness of restorations 

monitored for anything less than 3 years. Moreover, to the author’s knowledge, there is 

no evidence that a satisfactory clinical performance after 1 or 2 years is predictive of 

good long-term performance. It is therefore debatable whether the results of any clinical 

study of less than 3 years should have any impact at all on consideration of change of 

existing material compositions or material handling procedures other than to reject 

materials exhibiting an unacceptably high early failure rate.  
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Stakeholders have therefore pursued alternative strategies to improve our 

understanding of how to develop innovative restorative materials which reduce the risk 

of secondary caries formation. Both academia and industry have designed numerous 

ingenious laboratory models and protocols for in situ experimental studies with the 

hoped objective of minimizing adhesion of cariogenic biofilms, preventing the 

occurrence of secondary caries adjacent to restorations, and elucidating the reasons for 

the deterioration of the restorative materials including the tooth-restoration interface.  

Unfortunately, the correlation between microleakage around restorations or artificial 

caries-like lesions adjacent to restorations generated in vitro or in situ is poor versus 

tooth-restoration interface qualities measured in vitro or in vivo. It is also poor versus 

reported incidences of secondary caries observed in clinical efficacy or effectiveness 

studies [4-10]. There are probably multiple reasons for the incongruence between 

experimental data and clinical observations of secondary caries. The objective of this 

review is to critically appraise the existing experimental research with a focus on 

etiopathogenesis or prevention of secondary caries, and to explore possible 

explanations for the seemingly poor correlation to clinical observations.  

2. Dental caries 

A full review of the continuum of dental caries is outside of the scope of this article, but 

some features of this disease warrants a brief review in the context to the secondary 

caries puzzle.  

Caries develops first in the enamel, a tissue with densely packed uniaxial crystallites 

with inter- and intraprismatic micropores that are 1-30 nm wide. The tissue structure 

display a type of molecular sieve behaviour and is anisotropic to light [11, 12]. The 

anisotropy is due to both its intrinsic (or crystalline) birefringence, as well as a form (or 

textural) birefringence (also known as structure anisotropy). When the enamel 

demineralizes, the intrinsic birefringence changes, but the form birefringence persists 

because pores between the enamel prisms remain oriented and they have a diameter 

and separation that is much smaller than the wavelength of visible light (390 to 700 

nanometers).  
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Transilluminated ground sections of enamel with caries demonstrates in most situations 

four distinct zones within the caries lesion when viewed in an optical microscope. The 

zones represent different optical properties of the tissue and are particularly discernible 

when the ground section is imbibed in a medium with a refractive index similar to intact 

enamel in a polarized light microscope (PLM). Investigators have used either water 

(R.I.=1.33), alcohols (R.I.= 1.33-1.43), Thoulet’s solution, consisting of potassium 

mercuric chloride (R.I.= 1.41-1.62) or quinoline (R.I. = 1.62) to enhance the separation 

of the enamel lesion zones in the microscope as well as estimating pore sizes as a 

function of molecular size of the imbibition media. A narrow superficial zone appears 

intact, probably because of precipitation of mineral ions interfacing the pellicle, saliva 

and biofilms in vivo, alternatively some fluid in vitro. Immediately below the surface zone 

is the body zone, which is more extensive and contains microporosity levels between 

25% and 50% [13]. Two zones deeper have less microporosities and are characterized 

by smaller diameters. The first visible carious change contains few micropores, while 

the succeeding stage contains more, but smaller micropores and these are too minute 

for quinoline to infiltrate because of its molecular size. Hence, the two zones appear in 

the PLM as respectively, translucent and dark and hence their designation [14, 15].  

While the enamel caries lesion progress, the dentin immediately below the lesion 

hypermineralizes [16], often labelled as sclerotization of the dentinal tubuli [17]. On all 

surfaces, with some exceptions occlusally once the caries lesion advances to the point 

that dentin starts to demineralize the periphery of the caries lesion in the dentin 

corresponds to that of the periphery of the enamel lesion [18]. It is only under rapid and 

extensive caries development with cavitation and heavily infected dentin that dentinal 

caries can progress along the dentin-enamel junction to undermine the enamel [16]. 

Several approaches for creating artificial caries-like lesions have been developed, some 

specifically tailored to create lesions in enamel or in dentin or in root cement [19-22]. 

Both human and non-human, mainly bovine, teeth or tooth specimens are used. Two 

techniques to create artificial caries-like lesions dominates. The most common is the 

use of an acidified substance or solution without [20], or with buffering [21], and with or 

without pH-cycling [22]. A second approach is an exposure to an acidified broth 

containing usually some strain of Strepotococcus mutans. The ultimate hope is to build 
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the artificial mouth, or at least a steady state microcosm, to study caries processes. In 

spite of a range of dental plaque biofilm models systems [23], or mathematical models 

[24] as well as elaborate contraptions [25], we have not succeeded yet to simulate the 

complexities of the intraoral ecology and microenvironment.  

An alternative approach to create artificial caries-like lesions is the use of in situ models 

[26], where specimens from human or non-human teeth are mounted in a dental device 

and worn by the study subjects for various periods. The surface of the specimens are 

often covered or machined to increase dental plaque retention [27]. In situ models are 

versatile, and therefore used for multiple research objectives, such as assessing erosive 

or cariogenic potential of various substances. The inverse is also possible, by 

appraising the potential for remineralization following application of various oral care 

products, foremost the ones containing fluoride, on preconditioned specimens. When 

the objective is to create artificial caries-like lesions, it is not uncommon that the study 

participants are instructed to “speed up” the process by repeatedly bathing the 

specimens, e.g. in a 20% sucrose solution four times per each day.  

Mineral loss in dental tissues can be expressed as differences in the three parameters 

lesion depth (Ld), mineral loss value (ΔZ) or mineral lost per unit lesion length (R). A 

lesion is often defined by a mineral content that is 5% lower than the sound enamel and 

depth is defined as the distance from the outer surface. Mineral loss value is the 

integrated surface area between the mineral distribution tracings of the carious and 

sound tissue while the mineral lost per unit lesion length is the ratio between the two, 

i.e., ΔZ/Ld [28].  

It is well known that the different approaches to create artificial caries-like lesions in vitro 

and in situ produce different mineral loss profiles of the surface and subsurface zones in 

the enamel [29, 30], as well as in the dentin [31] as well as root cement [32]. These 

differences can be quite large, e.g., a carboxymethyl cellulose gel (6%) at pH = 5 

causes approximately 33 volume % mineral loss in enamel per day, while an unstirred 

demineralization solution at pH = 5 causes 13 and 26% volume % mineral loss in 

enamel per hour, with and without fluorides added respectively. The demineralization 

rate increase by 1.6 when the solution was used on dentin surfaces [33].  
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Several strategies have been adopted to create artificial caries-like lesions adjacent to 

restorations, often without consideration of the very aggressive nature of the 

methodology with likely negative effects on the restorative material and of course not 

occurring in reality intra-orally. An additional confounder is that the restorative materials 

in many papers have been exposed to the aggressive environment immediately after 

the clinical setting time, which is not necessarily synonymous with a fully hardened or 

polymerized material. Hence, the adoption of methodologies for causing artificial caries-

like lesions in enamel have perhaps been too uncritically extrapolated to create artificial 

caries-like lesions adjacent to restorations without full consideration of all potential 

confounders [34]. A particularly interesting phenomenon is that artificial caries-like 

lesions in dentin will subsequently hyper-remineralize upon exposure to a solution 

containing fluorides [35]. The phenomenon has been the basis for testing multiple 

fluoride-containing restorative materials with a measurable effect in the laboratory, but 

with disappointing results clinically. Moreover, real-life dentinal caries is not limited only 

to demineralization, but becomes heavily infected by mono- or multispecies biofilms, 

which is difficult to reproduce fully in vitro. The circumstance may perhaps not be 

significant when the research focus is to elucidate the chemistry of demineralization-

remineralization of artificial caries-like lesions in the enamel. However, the situation is 

different when the research focus is to appraise the demineralization-remineralization of 

artificial caries-like lesions adjacent to restorations made from materials with alleged 

anticariogenic properties, as presented and discussed in a subsequent section.  

Techniques to estimate the mineral contents of natural caries lesions or artificial caries-

like lesions in teeth and tooth specimens can be categorized as destructive and non-

destructive. The former encompasses chemical analyses, microhardness testing, optical 

birefringence, confocal light microscopy or laser scanning microscopy (CLSM) with or 

without fluorescence markers, transverse microradiography (TMR) and microprobe 

analyses. Non-destructive methods include surface microhardness testing, iodine 

absorptiometry, longitudinal microradiography (LMR), light scattering and iodide 

penetration. Each detection method carries benefits and disadvantages with regard to 

discrimination threshold in dental tissues, resolution, time, costs and complexity [36]. 

More recent innovations such as energy-dispersive spectroscopy (SEM-EDX), Raman 
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spectroscopy, and Fourier-transform infrared spectroscopy (FTIR) allow detection of 

minuscule changes or differences of mineralization levels. In clinical settings, some of 

the later methods have been supplemented with light-, infrared- or laser-induced 

fluorescence, electrical conductivity and computerized radiography with or without 

algorithms for automated detection of lesions. The most recent promising tools for 

potential use in clinical settings to detect demineralization of teeth are based on optical 

coherence tomography (OCT) [37], and particularly polarization-sensitive optical 

coherence tomography (PS-OCT) in combination with near-infrared light [38].  

3. Restorative materials and the tooth-restoration interface 

The range of restorative materials today has never before been so extensive and the 

inherent tooth-restoration interfaces differ accordingly (Figure 1). Descriptors of the 

interface for all types of restorative materials are “margin”, “adaptation or adaptability” or 

“gap”. Other terms are primarily associated with particular restorative material. E.g., the 

term “seal or sealing” is used mostly in relation to adhesive materials, while “ditch” or 

“crevice” is restricted to amalgams and “fit” or “discrepancy” are applied predominantly 

to indirect restorations regardless of the material composition. The different terminology 

hints at the fact that the chemistry and mechanical properties of the tooth-restoration 

interfaces are vastly different as a function of the restorative material.  

Moreover, the tooth-restoration interfaces are never static, but in a complex dynamic 

equilibrium with substances and minerals in the saliva and in the more or less porous 

hard tissues of the tooth. This is manifested clinically as corrosion products around 

amalgam restorations and cement washout around indirect restorations, likely 

influenced by the width of the luting cement space. For restorations made from glass-

ionomer cement restorations and resin composites, including the hybrids ranging from 

resin-modified glass-ionomers to polyacrylate-modified resin composites, there are no 

particular manifestation of the state of the tooth-restoration interface except for marginal 

staining, which is often related to a patient life-style factor. For most polymers, we know 

today that particular fatigue processes lead to degradation of polymers, including in the 

tooth-restoration interfaces [39-41]. Fatigue degradation processes can only be studied 

by experiments conducted in vitro [42], but as alluded to earlier, engineering an artificial 
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oral microcosm is extremely challenging. While it should be possible to engineer 

repetitive cycles of pH, solute-solvent combinations, thermal cycling and mechanical 

loading that generate compressive, tensile and shear stress, other key parameters are 

the patient’s salivary composition and amounts, shifting occlusal loads, dietary habits 

and oral cleanliness. Emerging research can be interpreted as if even the individual’s 

intra-oral bacterial profile may play a role in the biodegradation of some polymers [43], 

which is a factor that is very difficult to simulate in a laboratory model [44]. 

For years, the best practice for dentists with regard to excavation of carious dentin has 

been to stop when the surface seemed “firm” upon probing with a dull dental probe. 

Later studies showed that this practice removed the infected dentin, but left a superficial 

zone of demineralised tissue [45]. Later studies has revealed that carious dentin display 

four different zones, each zone with distinct microstructure changes, nanomechanical 

properties and decreasing mineral contents [46]. Efforts to achieve biomimetic 

remineralization in dentin are ongoing [47], with a major rationale that once the dentin 

begins to remineralize its biomechanical properties improve [48]. However, the 

remineralisation of these zones in the dentin is far more complex than in enamel, since 

there are no seed mineral crystals that remain like in enamel [49].  

4. Diagnosis of secondary caries versus detection of artificial caries-like lesions 

There appears to be confusion about terminology regarding secondary, alternatively 

labelled as recurrent, caries. In the classic study that firmly linked dental caries to a high 

consumption of carbohydrates, i.e., the Vipeholm study, secondary caries was simply  

described as “caries adjacent fillings” [50]. Many today hold the same view, while others 

have pursued the quest to identify and eliminate so-called “(cavity) wall (caries) lesions”, 

a term that first appeared in the scientific dental literature in 1971 [51]. The labelled 

lesions observed in the PLM as “caries”, in spite of the estimated 1-2% mineral loss that 

these lesions represented [52]. In perspective, the body zone of an enamel caries lesion 

contain between 25 and 50% mineral loss [13]. Even though minute demineralizations 

may correctly be labelled as “caries” from a strict scientific perception, most dentists and 

patients will have a very different mental picture upon discussing the signs and 

symptoms of the disease entitled “dental caries”. 
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Uniform terminology is important, and it is likely that researchers and clinicians differ in 

their concept of perspective of the disease entitled “dental caries” [53], and particularly 

so to the conception of “secondary caries”. Any disease can be regarded from two 

different concepts of perspective, which have been labelled as essentialistic or 

nominalistic [54]. The former signifies a conviction that the disease exist in itself, but our 

criteria for describing the disease changes over time. The alternative perspective is that 

it is the actual signs and symptoms that constitute the disease. An essentialistic 

perspective is that (secondary) caries is ubiquitous in all individuals since there is a 

constant demineralization-remineralization activity process ongoing on the tooth 

surfaces, including along the restoration margins. It follows that the manifest clinical 

signs and symptoms is regarded as the consequences of caries and does not constitute 

the disease in itself. With an essentialistic perspective, any mineral loss from the dental 

tissues will constitute “caries or secondary caries”. The alternative nominalistic 

perspective is that one or more actual signs constitute “caries or secondary caries”, and 

the question that remains is to define the most appropriate operational thresholds. 

Some may feel that this threshold is at the lowest detection limit of a particular new 

high-tech tool that employ, electrical conductivity or computerized radiography. Others 

may decide that the operational threshold is a white or brown spot on the enamel that is 

apparent visually or enhanced with some form of light-, infrared- or laser-induced 

fluorescence. A third threshold level is represented by visually apparent frank cavitation 

with or without a discoloration or softened tissue upon probing.  

The recognition that researchers, clinicians and patients may hold essentialistic or 

nominalistic perspectives on secondary caries, provides a conceivable framework for 

interpreting the occasionally incompatible findings and opinions. Stated in other words, 

one needs to be reminded that there is a vast difference between detecting a particular 

quantity of demineralization in a sample, versus diagnosing a disease intraorally. Using 

the label “caries” for both is conceptually inappropriate, and researchers and clinicians 

should in communications clearly separate between the disease “caries” and the 

histopathologically term “artificial caries-like lesions”. 

Most of the techniques used for detecting primary caries and artificial caries-like lesions 

have also been used to detect secondary caries and artificial caries-like lesions 
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adjacent to restorations. There is no particular technique that is only applicable to detect 

caries adjacent to restorations. The predominant detection method favored in laboratory 

research appears to be ground sections examined in a PLM or microradiography. 

Recent research has adopted more modern technologies, principally methods relying on 

the optical properties of hard tissues. To the author’s knowledge, there are no 

systematic studies on possible artifacts and distortions of different approaches with 

respect to the detection of secondary caries or artificial caries-like lesions. Such effects 

may originate from, e.g., optical edge effects, specular reflections from the restoration 

surface or from organic and inorganic components with particular physico-optical 

properties.in the tooth-restoration interface.  

Dental hard tissues that remain in intimate contact with a restorative material 

demonstrate often a different optical birefringence compared to the remaining bulk of 

the tissues. The investigators that first described the phenomenon based on 

observations in PLM interpreted the areas in the contact zone of the enamel and dentin 

as caries [51]. They stated further that the areas were often not visible when the ground 

specimens were imbibed in water, but appeared only when the sections were imbibed in 

quinoline. Based on this information, the estimated mineral loss would amount to 1-2%, 

based on the algorithm available for calculating mineral loss [52]. Intriguingly, all 

estimate algorithms at the time were based on experiments on enamel and not for 

dentin, since the whole basis for using combinations of imbibition media with different 

molecular sizes and refractive indices was to establish molecular sieving as a function 

of pore sizes in the enamel [11, 12]. Given more recent adjustments on the relationship 

between optical birefringence and mineral content in enamel [14], as well identified 

polynomial relationships of the non-mineral contents as a function of the mineral content 

[55] one may doubt that even the estimated 1-2% mineral loss is correct. Appraisal of 

the optical birefringence of dental tissues in PLM is influenced by many known and 

probably unknown variables, including the strong effects of extraction of lipid and 

protein and likely other organic substances on optical birefringence [56]. One team of 

investigators have even questioned whether estimates of mineral content in dentin 

based on PLM have been correctly interpreted over the years [57]. 



12 

Quantitative light-induced fluorescence (QLF) has been appraised in eight clinical 

studies for diagnosing secondary caries or detecting artificial caries-like lesions adjacent 

to restorations [58]. Only one study describe the tool as better than the use of 

radiographic bitewing films or visual examinations [59], while the remaining papers 

suggest that the technology should at best be considered as complimentary.  

OCT has been used to detect artificial caries-like lesions below fissure sealants [60], 

and may have promise for use as a tool for diagnosing secondary caries beneath 

translucent restorative materials when combined with cross-polarization (PS-OCT) and 

Fourier-domain techniques (so-called Swept-source OCT) using near-infrared light [61]. 

However, it remains to be resolved how to proceed in practice to take into account the 

vast variation of refractive indices of different resin composites as a function of their filler 

content and particle size distributions [62]. 

5. Etiological factors  

Secondary caries may develop rapidly around and below a broken restoration, or slower 

and more localised on the enamel along the cavosurface margin. Some will also 

advocate the existence of a third type, labelled as “(cavity) wall caries”, which will be 

discussed in the following sections. There are no reliable estimates of the prevalence, 

nor proportions of the three types of secondary caries development, but the localized 

type likely predominates [63].  

Any site along the cavosurface margin will demineralise if the local conditions change to 

an acidic environment. In this regard, secondary caries is not different from primary 

caries, although the demineralization-remineralization process is influenced also by the 

presence of fluorides, if any. The acidic environment depend on the biomass of specific 

cariogenic bacteria on the more or less polished restoration surface, or rather to the 

intermediary salivary glycoproteins that first form a pellicle to this surface [64]. A 

minimum critical amount of mature biofilm is required to create the acidic environment, 

and there are few alternative hypotheses regarding the origin of the acidic environment. 

A general belief is that the cariogenic biofilm for primary and secondary caries are 

similar, and consist mainly of Streptococcus mutans, Lactobacilli and Actinomyces 
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naeslundii [65-67], although a contrary opinion based on observations made in an in situ 

experiment has been proposed [68]. 

All factors that enhance the accumulation of biofilm mass or impede biofilm removal 

may be considered as risk factors for secondary caries. It is probably the reason why 

secondary caries occurs predominantly cervically, and especially on the proximal 

surfaces [69]. 

The qualities and quantity of biofilms on restorative materials have been measured after 

some time on specimens appraised in vitro, alternatively in situ in a dental device, or 

collected on surfaces of restorations in vivo. Differences have been noted, as expected 

due to variance of surface roughness and porosities as well as variance of physico-

chemical properties. It is imperative to recognize that the bacterial colonisation of 

pellicle-coated surfaces under in vivo conditions differs considerably from monospecies 

or multispecies biofilm models in vitro. Moreover, corrosion- and biodegradation 

products originating from the restorative material may influence the biofilm [70], and the 

association between surface topography and chemistry and biofilm quantity and 

qualities is complex and not yet fully understood [71]. No research has addressed 

whether particular corrosion- and biodegradation products may be associated with the 

bacterial composition of infected dentinal secondary caries lesions.  

Infected dentin at the enamel-dentin junction that originate from secondary caries 

appear to have similar microflora as if the origin was primary caries, consisting of 

anaerobic microflora, Streptococcus mutans and Lactobacilli [72]. It is unclear, whether 

infected dentinal caries adjacent to restorations made from amalgam versus resin 

composite may differ. One research group proposed that the amount of microorganisms 

under composite compared to amalgam was higher and with a greater variety [73], 

while another group reported no such differences [74].  

An individual’s risk for secondary caries is also modified by the saliva quantity and 

qualities, which in particular comprise the salivary buffering ability. Patients with 

xerostomia for whatever reason experience more secondary caries, as a reflection of a 

higher risk of all forms of caries.  
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With regard to adaptation at the cavosurface margin there is likely a correlation between 

larger and larger defects or gaps versus bulk of accumulated biofilm and consequently a 

risk of secondary caries, but it is impossible to determine a “minimum size”. An 

adaptation between a restoration and a tooth at the cavosurface margin is generally 

considered clinically acceptable when it is less than about 30 µm, even though this 

leaves more than enough space for ingrowth of bacteria that have a dimension of about 

one µm.  

Nobody has persuasively documented clinically that caries can develop in a tooth-

restoration interface independent of enamel caries on the outer surface [63]. In contrast, 

restored teeth with secondary caries often reveal lesions on the outer enamel surface 

that are unrelated to the tooth-restoration interface [75]. Nor is there any evidence that 

localized caries in the tooth-restoration interface can progress along the enamel-dentin 

junction beyond the periphery of the body zone of the enamel caries. 

In conclusion, secondary caries may develop in the presence of a cariogenic biofilm, but 

it will probably never develop in lack of a cariogenic biofilm regardless of the technical 

quality of the restoration. A discussion of which particular detail of the restoration that 

represent a threshold between a minor and major risk for secondary caries development 

appears from this perspective to be indeterminate. The oral hygiene habits of the patient 

is the primary factor that determines if secondary caries develops, not whether the 

restoration along the cavosurface margin can be considered as 'excellent', 'adequate' or 

'deteriorated'.  

6. The “(cavity) wall lesion” – what is in a word? 

The term “wall lesion” including its variants is ill defined, has been, and is still being 

used indiscriminately. Variants are e.g., “inner (wall) caries like lesion” [77] and 

“secondary caries wall lesion” [78]. Firstly, as argued in a previous section there is a 

difference between an artificially created “caries-like lesion” characterized by a certain 

level of demineralization, versus the disease entitled “caries”. Secondly, as discussed 

below it is doubtful whether there is an entity such as a wall lesion that exists 

independent of an outer enamel lesion. Thirdly, it is important to realize that the 

connotation of the term varies in the literature. The majority of research papers use the 
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term “wall lesion” simply to describe the portion of a caries lesion or artificially created 

caries-like lesion that is in contact with a restoration. However, some investigators have 

also used the term to describe the surface of tooth specimens placed against a block of 

restorative material and exposed to an acidic environment [77, 78]. 

The term originated in the scientific dental literature from a paper describing the 

histopathological characteristics of dental tissues adjacent to amalgam restorations that 

had been exposed to a very aggressive chemical environment for extensive periods 

[51]. The investigators reported that “wall lesions” appeared as a narrow zone with a 

uniform thickness along the tooth-restoration interface when ground sections were 

imbided in quinolone and viewed in PLM.    

While there is no reason to doubt that something was observed in the PLM, a lingering 

question is whether not the optical phenomenon observed by these [51] and 

subsequent investigators could have different explanations besides an estimated 

minuscule demineralization [52] along the tooth-restoration interface. Apatite is a very 

reactive mineral that can undergo rapid chemical substitutions, which slightly changes 

the mineral structure and often have critical effects on optical properties such as 

birefringence [79]. While fluorapatite has a optical birefringence of 0.003, hydroxapatite 

range between 0.004 and 0.007, but even minor changes of e.g., carbonate levels have 

a pronounced effect on optical birefringence [80].  

It would seem reasonable to assume that a machined or chemically primed enamel or 

dentinal surface, such as a cavity wall, would display a different optical birefringence 

compared to the bulk tissue. In fact, one investigator reported also “wall lesions” along 

the pulpal floor of prepared cavities that had remained unrestored and contained only in 

water [52]. Unfortunately, the author failed to discuss this particular finding and later 

investigators seem not to have repeated the efforts of making control specimens made 

from cavity-prepared, but unrestored teeth. 

Moreover, the investigators hypothesized that the “wall lesion” was most likely caused 

by hydrogen ions penetrating from the outer surface through the tooth-restoration 

interface referred to as a “microspace” [51]. However, the hypothesis seems 

questionable since this should have caused relatively more demineralization near the 
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outer surface and relatively less in the pulpal direction where calcium and phosphates 

would rapidly supersaturate the fluid and counter-effect any hydrogen penetrating only 

in the tooth-restoration interface starting from the surface. Examination of multiple 

articles that present PLM photographs reveal no funnel-like lesions in the dental contact 

zone along any restorations. Interestingly, one of the main conclusions in the paper that 

first described the histopathological characteristics of the dental tissues adjacent to 

restorations was that the “wall lesions” were more extensive under unsupported in 

comparison with supported enamel prisms [51]. To this author’s knowledge there has 

not been subsequent research to clarify this aspect, nor to the other piece of information 

in the original paper that the enamel under unsupported prisms was actually radiopaque 

in the immediate contact zone and otherwise radiolucent, which the authors attributed to 

reprecipitation of reaction products. Hence, it seems more likely that the 

etiopathogenesis of these caries-like lesions adjacent to restorations is predominantly 

analogous to how caries-like lesions develop in enamel, where an exchange of 

hydrogen and dissolved calcium and phosphate occurs along the enamel prisms. This 

hypothesis is not in contradiction with the possibility that once the demineralization 

along the nanometer size enamel prisms conjoin with the tooth-restoration interface, the 

scale of exchange of ions multiplies due to larger surface area and facilitated transport 

through a larger volume of fluid in the micrometer size interface. 

A contributing factor for the observed optical phenomena in the initial study on amalgam 

restorations [51] were likely also the effects of aqueous metal salt solutions and 

sulphides that rapidly would have started to accumulate in the tooth-restoration interface 

and infiltrated the superficial layers of the hard tissues. Aqueous metal salt solutions 

influence optical birefringence [80]. The investigators themselves identified high 

concentrations of zinc and tin in the wall lesions with the use of electron probe analyses, 

and proposed that the presence of the ions was likely due to corrosion [81]. There are 

indicators that there is an association between corrosion properties as a function of 

amalgam alloy composition and extent of “wall lesions” [82]. It appears illogical that the 

artificially created caries-like “wall lesions” are seldom observed for restorations made 

from non-metallic materials, unless corrosion is not a major etiological component.  
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In general, several of the approaches used to generate artificial caries-like lesions are 

very aggressive. Remarkably little discussion has evolved about how  these aggressive 

approaches create microenvironments that do not occur in reality. For metallic 

restorations, it is likely that spontaneous active crevice corrosion develop, that further 

lowers the local pH [83]. The most thermodynamically active components that penetrate 

and precipitate in the dentin is tin and zinc, and the main corrosion constituent in tooth-

restoration interfaces including in dentinal cavity walls has been identified as oxides, 

sulphides and chlorides of tin, and to a lesser extent zinc and copper [84, 85]. Under 

which circumstances the metallic ions are transported superficially, or alternatively 

penetrate and precipitate deeper into the dentin remains unclear [86]. Moreover, 

systematic studies on the likely effects on change of optical birefringence [79, 80] upon 

penetration of metallic ions into dental tissues are lacking.  

With regard to polymeric materials and associated cavity preparations it is well known 

that even a short cavity etching procedure creates a zone of altered optical 

birefringence or “wall lesion” upon subsequent examination in a PLM [87]. The reason is 

unclear, but dentin demonstrates form bifringence, which has been attributed to the 

micrometer size of the dentin tubules [88]. Moreover, collagen, which is abundant in 

dentin also displays form birefringence [89]. It is not unlikely that any or all of these 

confounders will cause or influence optical birefringence in the interface between a 

restoration and tooth when ground sections are observed in a PLM [57].  

7. Etiopathogenesis of secondary caries gained from in vitro research  

The current knowledge about etiopathogenesis of secondary caries is gained essentially 

from in vitro experiments and clinical in situ models (Figure 2). In vitro experiments in 

the laboratory cover studies on microleakage or artificial caries-like lesions adjacent to 

restorations, and a few studies that include both. Laboratory tests designed to predict 

clinical outcomes must rely on sound data on actual clinical performance obtained 

through controlled studies or evaluations [90, 91]. An example where controversy has 

existed due to the incongruence between the predominantly encouraging in vitro data 

and the less impressive in vivo results is the alleged benefits of glass ionomer cement 

with regard to secondary caries [92, 93]. One study that sought to clarify the relationship 
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between artificially created caries-like lesions adjacent to restorations with secondary 

caries concluded that there was a complete lack of correlation [94]. The investigators 

stated further that they believed artificial caries-like lesions created in the laboratory 

have a negligible clinical relevance in predicting caries of fluoride-containing materials, 

a sentiment that have also been expressed by others [95, 96]. Yet, other investigators 

have continued to present study findings from in vitro experiments claiming alleged 

protective effect of fluorides from glass-ionomer cement [97, 98]. 

7.1 Microleakage  

The investigators who proposed the term “wall lesion” proposed also an association with 

a “microspace” between the tooth and the restoration [51]. Many still believe that such 

tooth-restoration “microspaces” exist where secondary caries can progress to frank 

cavitation, independent of any enamel caries, and that microleakage studies attest to 

the existence of this “weak link”. It is probably not the case. 

A key publication that prompted great interest on the subject contained the provocative 

title “Fluid exchange at the margins of dental restorations” [99]. The authors reported 

that droplets with a diameter up to 44 µm developed along the restoration cavosurface 

margins in extracted teeth upon rapidly freezing and thawing. The authors dubbed the 

phenomenon as “marginal percolation” attributed to differences in thermal expansion of 

the tooth and the restorative material [99]. Almost concurrently, it was discovered that 

dental structures were permeable to radioisotopes, which included the “penetration at 

margins” [100]. Contemporary research literature reported on the “sealing qualities or 

properties” of restorative materials, with the objective to obtain “hermetic sealing” and 

avoid “fluid penetration”. The term “marginal leakage” appeared a few years later in 

1961 [101]. The catchy term “microleakage”, which has remained to this day and 

suppressed all preceding descriptors, appears in a few IADR meeting abstracts from 

1959, but the first actual article containing the term was published in 1966 [102]. The 

derivative term “nanoleakage” appeared some 30 years later, to denote localized 

leakage within the tooth-adhesive interface [103], although the 50 wt.% silver nitrate that 

is used as a marker by then had already been used in microleakage experiments for a 

decade [104].  
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Microleakage experiments apparently continue to emerge regardless of multiple reviews 

over the last 20 years questioning the reliability and validity of the  experimental 

materials and methods (Table 1). Despite appeals from journal editors and some 

researchers to advance the methodology of microleakage experiments, rather than 

reporting more data, relatively few papers describe the effects of experimental variables 

on the outcomes [4-10]. As a consequence, there are great variations in experimental 

setups [116-117], to the extent that it is seldom possibility to meta-analyse any results 

[115]. Besides the still unknown confounders, numerous variables influence the 

microleakage experiment outcomes [7-10]. Examples are the source and type of teeth 

or tooth specimens, and choice of storage substrate and –time. An additional variable is 

the type of intra- or extra-coronal restoration, including the location of the cavosurface 

margin and angulation of cavity walls [119]. The handling, placement technique and 

polishing of the restorative material also influence the extent of observable 

microleakage [9, 10]. There is no consensus on consistency for multiple variables 

known to influence results, such as standardized aging processing like thermocycling 

[120], pH cycling [121] or repetitive mechanical loading [122]. Nor does this pertain to 

temperature and relative humidity during the conduct of the experiments [123]. The 

characteristics of the dye or tracer, such as its diameter, and the chemical properties of 

the solute and solvent as a function of concentrations and exposure time appears also 

to play a central role [116-118]. Most tracers have molecular radius of less than one nm, 

and it is not improbable that the microleakage in many cases is simply a manifestation 

of capillary action phenomena. The minuscule molecular dimension of dyes allows 

penetration into inter- and intraprismatic micropores in enamel considered to be1-30 nm 

wide, as well as in the peri- or intertubular dentin having 0.8-2.5 µm wide dentinal 

tubules. The use of fluorescent compounds have expanded the possibilities to appraise 

microleakage “bidirectionally” [124], but the confounding variables remain as a 

methodological challenge.  

Finally, there is variation with regard to the detection method, which is most often 

optical, and whether estimates of microleakage are based on two-dimensional appraisal 

or some form of volumetric measurements. Non-destructive tools that can provide 

volumetric estimates include confocal microscopy for relatively translucent materials 
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[125], CLSM [126], µCT [127] and OCT used with or without an additional contrast 

solution [128-130]. So far, the methods have been used to appraise sizes of gaps and 

defects, but not to experiments combining microleakage and creation of artificial caries-

like lesions.  

On top of all the critical opinions of microleakage experiments (Table 1), allegations 

have also been forwarded that many publications on microleakage contain incorrect 

statistical estimates and presentations [131, 132]. The lingering question in light of all 

this criticism is why so many still persist on conducting microleakage experiments and 

publish their data. In this light it is intriguing that most, but not all, conclusions made 

from microleakage experiments appear to be more often than not in harmony with 

clinical observations (Table 2).  

Most microleakage experiments have been done on extracted human teeth or bovine 

teeth. However, an alternative approach has been to restore teeth in situ, using either a 

permanent tooth meant for extraction, usually for orthodontic indications or in a 

deciduous tooth soon to be exfoliated. The time before extraction has varied from 7 

days [133], 4 to 6 weeks [134], to 5 to 7 weeks [135], or up to 18 months for exfoliated 

primary molars [136, 137]. In general, the conclusions made from these studies do not 

deviate from the observations made in the laboratory experiments. Nevertheless, 

subjecting extracted restored teeth subsequently to microleakage experiments is 

questionable, since high tensile and shear forces are generated during the extraction 

process that entail high risks of causing structural damage that is not necessarily 

visually apparent.  

7.2 Artificial caries-like lesions adjacent to restorations  

Since the first description of an experimental setup for developing artificial-like lesions 

adjacent to restorations in 1967 [138], some 160 reports have been published 

predominantly related to fluoride-containing materials. The number of experimental 

variables are at least as extensive as for the microleakage experiments. Acidified 

gelatin developed for generating artificial caries-like lesions in enamel was favored 

throughout the seventies and early eighties, and restored teeth were exposed to the 

acidified media for up to 200 days [51]. Acidified broths were also adopted by some 
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research groups, predominantly inoculated with Streptococcus mutans and sucrose. 

Whole teeth were restored, alternatively tooth specimens fabricated from human or 

bovine teeth and placed either immediately, alternatively after some form of artificial 

aging in closed vials, tubes or chambers. The acidified media were replenished in some 

studies, but the intervals have varied. Buffered media and less aggressive corrosive 

models appeared once glass-ionomer cements and other fluoride-containing restorative 

materials were subjected to studies on the relationship between fluoride release and re-

mineralization [34, 95]. In some studies, the acidified gels were dialyzed to eliminate 

ionically active calcium, phosphate and fluoride to assess only the fluoride release from 

the restorative material.  

Apart from the focus on material composition and fluoride release, several investigators 

have attempted to establish the relationship between artificial caries-like lesions and 

possible influence of the marginal gap size. In one early study, the investigators 

immersed specimens of human teeth in a broth inoculated with Streptococcus mutans 

containing either sucrose or glucose. The specimens were mounted in a mechanical 

screw device that enabled the placement of tooth block containing both enamel and 

dentin to be located at a specific distance from a block made from amalgam. Abundant 

amounts of biofilm developed on all surfaces. Artificial caries-like lesions could be 

observed consistently in the contact zone of the dentin regardless of the gap space, but 

seldom in the contact zone of the enamel. The enamel surface that did not face the 

amalgam block developed extensive artificial caries-like lesions under an a thick layer of  

biofilm [139].  

This geometric setup was replicated in an improved mechanical device several years 

later against a block of resin composite [140]. The authors concluded that there were 

clear correlations between gap size and demineralized lesions in the contact zone, 

which they regrettably named “wall lesion”. They reported also that artificial caries-like 

lesions could be observed at “gap size zero”, although they cautioned about the 

limitations of the model and need to be careful in drawing clinical implications from their 

findings. Using the same device, other investigator groups have replicated the 

geometric setup and consistently described the demineralization occurring on the side 

of the specimen facing the block of restoration materials and regrettably stuck with the 
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term “wall lesion” [77, 78]. E.g., in one of the studies a specimen block was covered with 

an acid-resistant varnish leaving only one surface, i.e. “the wall”, some 50 to 250 µm 

away from a block of resin composite and place the assembly in an acidic environment 

[77]. Obviously, one would expect demineralization to occur, but complete 

misunderstanding of the results by clinicians because of poor choices of terminology by 

basic scientists is understandable upon reading conclusions such as: “The extent of 

independently developed wall lesions increased with gap width in the present setting” 

[77].  

Dental hard tissues including the tooth-restoration interface contain mineral, structural 

and adsorbed water and organic matter that undergo dynamical changes during the de- 

and remineralization progressive steps in different histological layers. A problem with 

many of the in vitro models is that the remineralization potential is limited. Moreover, the 

medium needs to be replenished regularly to avoid stagnation and buildup of acids or 

ions, including fluorides, which may control reactions. Another clinically relevant factor 

that is seldom incorporated into in vitro experiments is the effects of mechanical loading, 

which clearly affects the tooth-restorations negatively and accelerates the rate of 

artificial caries-like lesions [122, 141]. 

Some investigators have attempted to overcome the methodological problems with in 

vitro experiments by conducting in situ experiments. Approximately 1x2x1.5mm tooth 

specimens adjoined with same size restorative materials have been mounted in an 

intraoral device [142, 143] or a complete removable prosthesis [144] and worn for 

several weeks. Demineralization has been speeded up by washing the device in a 

sucrose solution. The authors name these demineralized contact zones as “wall 

lesion”[144] or “secondary caries”[143] or “secondary caries lesion”[142], all terms that  

may be questioned given the arguments presented in previous sections of this review. 

In summary, several of the in vitro and in situ approaches to create artificial caries-like 

lesions have been applied to generate artificial caries-like lesions adjacent to 

restorations. However, to what extent the different approaches vary with regard to type 

and extent of deterioration of different restorative materials and adhesives has not been 

systematically examined and reported. It is very likely that the various techniques for 
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creating artificial caries-like lesions will cause different interactions with the actual 

restorative material or tooth-restoration interface. One study reported that a chemical 

method was more aggressive than a microbial approach applied to six different groups 

of restorative materials [145].  

That the major bulk of dentinal caries is heavily infected and not only demineralised is 

difficult to simulate in a laboratory experiment. While this factor may perhaps not be 

significant when the research focus is demineralization-remineralization of primary 

caries, the situation is different with regard to the study of the etiopathogenesis 

secondary caries. One of the hypothetical benefits of leakage of, e.g., antibacterial 

agents in adhesives, fluorides from glass-ionomer cement or zinc from amalgam is the 

conceivable bactericidal or bacteriostatic effects. One may perhaps better understand 

the complexities of unknown variables when realizing that e.g., the desirable release of 

fluoride ions from a fluoride-containing material is a consequence of basically corrosion 

or degradation, which is only desirable up to a certain extent. E.g., for amalgams the 

selected approach to create artificial caries-like lesions adjacent to restorations will 

impact on how rapidly stannous- and zinc oxides and -sulphides will develop, which 

eventually obliterate the microspace, but will at the same time also reduce the leakage 

of fluoride ions. Another effect associated with the corrosion of amalgam that is difficult, 

if not impossible to study in any existing techniques to create artificial caries-like lesions 

is the effect of leaked zinc ions that promote the formation of apatite crystals on partially 

demineralized collagen fibrils and thereby induce remineralization of dentin interfaces 

[146]. In summary, it is not obvious that techniques to create artificial caries-like lesions 

developed for the study of etiopathogenesis of enamel caries are also appropriate for 

elucidating etiopathogenesis of secondary caries. 

8. Secondary caries incidence in controlled clinical studies versus cross-sectional 

examinations 

Reports of the incidence as well as the prevalence of secondary caries have ranged 

from insignificant to extensive and multiple authors have voiced scepticism with regard 

to their validity in both directions [1-3, 147-149]. Which estimates of secondary caries 

should we believe? The list of potential biases that likely influences the estimates is 
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extensive and includes selection bias, performance bias, detection or assessment bias, 

attrition bias and reporting bias. Respective typical examples are patient recruitment 

amongst dental students; studies not conducted in general dental practice, lack of 

operational descriptive criteria or judgement of own clinical work; high number of patient 

dropouts especially amongst the unhappy ones; and the reporting of surrogate or 

alternative outcomes rather than patient-relevant ones [147, 148].  

At what stage the attrition rate becomes a concern with regard to restoration 

performance estimates is uncertain. As for all categories of clinical research, a balance 

needs to be sought between maintaining methological rigor versus practicality. One 

author group defined trials with low methodological quality as non-RCT or RCT with 

more than 5% participant attrition per year [149], which disqualifies an estimated 98% of 

all publications today. Probabilistic logic aside, it can be countered-argued that in 

today’s mobile world, the likelihood of a near-zero attrition is unrealistic. It follows that 

study participants who return for a follow-up clinical examination many years after the 

initial restorative treatment for a particular reason are perhaps not representative of the 

general population at large, at least not when it comes to oral health attitudes and 

treatment behavior. A concern of patient representability can be also be applied to 

retrospective clinical studies. The moment a decision is made to recall patients for 

whatever research objective to combine observations with information in the patient 

charts, it is the happy patients that have remained in the practice, while the dissatisfied 

ones have disappeared.  

In conclusion, the data sampling method, patient demography as well as study 

methodology influence the incidence and prevalence estimates of secondary caries. It 

may be questioned whether a quest for “overall” exact values are meaningful from a 

scientific or clinical perspective.  

It is taken for granted that dentists in real-life prepare textbook-like cavities in teeth to 

receive the restoration. Is this a correct assumption? The quality of cavity preparations 

made by dentists to receive restorations has received scant attention in the literature. 

With the use of a comprehensive set of criteria for the assessment of class II cavities 

[150], it was recognized that a large proportion of such cavities prepared by dentists in a 
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practice base research network contained multiple deviations from the textbook “ideal” 

morphology [151-154]. However, the impact of questionable and inadequate cavity 

preparations on the incidence of secondary caries was minor with regard to class II 

restorations made from amalgam when these were monitored over the following ten 

years [155-156]. Whether this would have been the case for posterior resin composite 

restorations is left to the qualified reader to consider. The knowledge that was gained in 

this study though, is that the assumption that all dentists in real/life dentistry consistently 

prepare ideal textbook-like cavities is incorrect. It is likely also naïve to believe that 

dentists always handle and place restorative materials optimally and according to 

handling instructions and ensure that their patient is motivated and able to prevent 

future caries. Data on restoration performance obtained in cross-sectional studies 

reflect the good and the bad operators and oral health attitudes and practices of 

patients. Conversely, results from clinical trials conducted under strictly controlled and 

monitored conditions where calibrated and highly technically skilled clinicians place 

restorations in teeth of e.g., dental faculty and students in a clinical setting with no 

support staff and time constraints have perhaps more value for the manufacturers’ 

marketing departments than for their colleagues working in the research and 

development departments. Restorations undoubtedly perform better than average when 

placed in such exceptional circumstances, and results may be considered as a best 

performance potential in patients with excellent oral health. However, results based on 

clinical work in settings where cost per unit time is of nominal concern do not provide 

any indications on how the restorative material will perform when placed by the average 

dentists in mouths of their spectrum of patients during a busy workday. Stakeholders 

have raised a reasonable concern about whether manufacturers should devote more 

time and effort to develop restorative materials that perform adequately in the hands of 

most professionals or optimal performance in the hands of only the highly skilled 

professionals [157]. 
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Table 1. Conclusions made by authors of reviews of microleakage studies over the last 

four decades 

 

Author Main conclusion 

1968, Roydhouse [105]  …of limited value …because many variables are not accounted for. 

Tests may demonstrate a potential, but not a clinical reality 

1969, Loiselle et al. [106]  …these tests eliminate the effect of pulpal hydrostatic pressure and 

plaque 

1972, Going [107]  …most methods fall scientifically short in providing quantitative data 

1981, Jodaikin [108]  …no direct comparison possible between in vitro & in vivo due to 

many variables 

1982, Shortall [109] … the results can be partly or totally influenced by the variations of the 

methodology applied 

1992, Taylor & Lynch 

[110] 

 …wide variations in methodologies are revealed 

1991, Söderholm [111]  …the relevance in a testing protocol for dentin adhesion must be 

questioned 

2001, Raskin et al. [112]  …results from different testing institutes could not be compared 

2003, Raskin et al. [113]  …results from different testing institutes are hardly reproducible 

2007, Sarrett [114]  ..evidence for a direct relationship between poor marginal quality as 

promoter or primary cause for secondary caries is limited, and any 

direct relationship is unlikely  

2007, Heintze [4]  …it does not make sense to use this elaborate labor-intensive method 

2011, Schmid-Schwap et 

al. [115] 

 …not possible to make a quantitative synthesis due to study 

heterogeneity 

2011 Heintze & Zimmerli 

[5] 

…dye penetration…do not correlate or correlate only partially with 

clinical findings 

2012, Bayne [6] … no correlation of microleakage with any clinical event has ever been 

established 
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2012, Dennison & Sarrett 

[7] 

…clinical evidence refute earlier conclusions that clinical microleakage 

leads to secondary caries 

2013, Heintze [8]  …moderate evidence that dye penetration tests does not correlate 

with clinical data 

2013, Dietschi et al. [9]  …the further use of this test method in the future should be strictly 

limited 
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Table 2. Conclusions made from experimental microleakage studies versus clinical 

observations. 

 

Clinical variable Suggestion Clinical observations 

Incremental vs bulk filling Less microleakage Corroborate  

Different curing approaches conflicting results ? 

Enamel vs dentin margins Less microleakage Corroborate 

Light cured vs self-cured Less microleakage Corroborate 

   

Matrix system conflicting results ? 

Primer solvent  Effect on dentin, not enamel Corroborate 

Incorrect cavity drying More microleakage Corroborate 

Boxed cavity form More microleakage than if rounded Corroborate 

Sharp margins  More microleakage than if beveled ? 

Occlusal loading More microleakage than if no loadi  ? 

   

Thick flowable liner Less microleakage in enamel (- 

dentin) 

? 

Adhesive brand conflicting results ? 

Flowable u. packable resin conflicting results ? 

rmGIC u. composite conflicting results ? 

Flowable u. rmGIC conflicting results ? 

Composite vs packable resin Less microleakage in dentin ? 

   

Etch-and-rinse vs self-etch conflicting results Corroborate 

Single versus two layers  Less microleakage Corroborate 

Composite brand conflicting results ? 

Composite vs ormocer conflicting results ? 

Composite direct vs indirect conflicting results ? 
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Figure 1. Illustration of the range of different tooth-restoration interface for the range of 
restorative materials used today for intra- and extracoronal restorations. Boxed areas 
indicate examples of restorations deficiencies.  
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Figure 2. Variations of research experiments to clarify etiopathogenesis or prevention of 
secondary caries.  
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